Formaldehyde columns from the Ozone Monitoring Instrument: Urban vs. background levels and evaluation using aircraft data and a global model Nicholas L. Boeke¹ (Nicholas Boeke@gmail.com), Sergio Alvarez³, Kelly Chance⁴, Alan Fried², Thomas Kurosu⁴, Bernhard Rappenglück³, Dirk Richter², Petter Weibring², James Walega², Julian D. Marshall¹ and Dylan B. Millet¹ ¹University of Minnesota, ²National Center for Atmospheric Research, ³University of Houston, ⁴Harvard-Smithsonian Center for Astrophysics ### 1. Introduction Tropospheric vertical column (Ω [molec. cm⁻²]) measurements of formaldehyde (HCHO) and nitrogen dioxide (NO2) from space-borne sensors offer constraints on the sources and photochemical processing of VOC (volatile organic compounds) and NO_X (NO+NO₂). Quantitative interpretation of satellite column data requires error characterization and consistency evaluation against other data sets. We evaluate measurements of Ω_{HCHO} from the Ozone Monitoring Instrument (OMI) against aircraft measurements and columns simulated by the GEOS-Chem chemical transport model. Ongoing work involves applying OMI Ω_{HCHO} and Ω_{NO2} , with GEOS-Chem, to investigate ozone production and variability across the U.S. ## 2. Spatial and temporal gradients in HCHO and NO₂ #### OMI: - UV/Vis spectrometer on NASA's Aura satellite - 13:45 local overpass - Global coverage daily #### **HCHO** Retrievals - Clear seasonal cycle in Ω_{HCHO} reflects temp., radiation and HCHO yield from biogenic VOC - No major enhancements over urban areas - Dry-season biomass burning visible in Yucatan #### **NO₂ Retrievals** - NO₂ columns mainly reflect anthropogenic emission sources; particularly fossil fuel combustion - NO₂ lifetime decreases in summer with increased photolysis **Urban-Rural** **Gradients** **Regional** **Variability** High spatial resolution: (13×24km² at nadir) provides more cloud-free scenes than predecessors; better sampling statistics | 0.0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | (10 ¹⁶ molec. cm ⁻²) | |------------------|-----|------------------|-----|-----|-----------|---| | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | (10 ¹⁵ molec. cm ⁻²) | | A September 1989 | | War and a second | 8 | | A Comment | | | Apr | | Ma | y | | | Jun | # mean Ω_{NO2} No corresponding relationship is detectable for Ω_{HCHO} except over the U.S. Northeast (possibly U.S. Southwest?) In the U.S. Southeast high Here we evaluate the fidelity of isoprene emissions → high the satellite sensor in resolving such gradients for HCHO Ω HCHO ## 3. Airborne HCHO measurements | Campaign | Platform ^a | Map
Symbol | Measurement
Technique ^b | Limit of Detection | Measurement
Uncertainty | |-----------|-----------------------|---------------|---------------------------------------|--------------------|----------------------------| | TEXAQS-II | Piper Aztec | | FHR | 50-120pptv | 10% | | TEXAQS-II | WP-3D | | DFGAS | 20-30pptv | 13% | | MILAGRO | C-130 | | DFGAS | 30-55pptv | 13% | | MILAGRO | DC-8 | | TDLAS | 20-30pptv | 13% - 15% | | INTEX-B | C-130 | | DFGAS | 20-30pptv | 13% | | INTEX-B | DC-8 | | TDLAS | 20-30pptv | 13% - 15% | ^ameasurements on board Piper Aztec made by University of Houston; all others made by NCAR ^bFHR=fluorometric Hantzsch reaction spectroscopy; DFGAS=difference frequency generation absorption spectrometry; TDLAS=tunable diode laser absorption spectroscopy #### 2006 Campaigns - TEXAQS-II: chemical processing, emissions and air quality in Texas airsheds - MILAGRO and INTEX-B: pollution outflow and transport from Mexico City and Asia - For comparison with OMI Ω_{HCHO} we restrict flight data to times bracketing OMI overpass (12:00-15:00 local time) #### Mean HCHO profile measured aboard aircraft and simulated by GEOS-Chem for each campaign #### In situ Ω_{HCHO} **Determination** - On average HCHO profile shape is well-captured by **GEOS-Chem** - We integrate HCHO within each flight's vertical limits then extrapolate to the surface and to the tropopause - Ω_{HCHO} calculated this way from modeled profiles correlates well with with Ω_{HCHO} from full 3D model grid: Y=1.1X-0.02; R=0.98 providing support for the method #### • OMI's mean bias is < 2% relative to aircraft measurements (full data set), -17% where $\Omega_{HCHO} > 4.0 \epsilon 15$ molec. cm⁻², but this bias is within the retrieval uncertainty ### 5. Summary - Aircraft HCHO measurements from MILAGRO, TEXAQS-II and INTEX-B provide a challenging comparison for OMI and GEOS-Chem as many flights focused on sampling polluted urban and biomass-burning plumes, which may be diluted by averaging over the satellite/model footprint (up to 28×150 km² and 2°×2.5°) - Still, both OMI and GEOS-Chem Ω_{HCHO} correlate well with HCHO observations from aircraft (R=0.80 and 0.81). - Given sufficient averaging over time and space to reduce random noise in the retrieval, OMI is able to capture spatial and temporal gradients in HCHO within instrument uncertainty. ## 6. Ongoing Research How does OMI Ω_{HCHO} relate to Ozone Production? (all plots below show mean values for summer months during 2005) • Ω_{HCHO} closely related to peroxy radical production rate (P(RO₂)) - dependent on VOC-OH reactivity and HCHO yield of local VOC mix • We use GEOS-Chem to examine how $P(RO_2)$ relates to Ω_{HCHO} - Note higher P(RO₂) per HCHO yield in urban areas - P(RO₂) is related to ozone production rate $P(O_X)$ by: - $-RO_2 + NO \rightarrow NO_2 + RO$ - $-NO_2 + hv \xrightarrow{O_2} NO + O_3$ ## GEOS-Chem $P(O_X) / P(RO_2)$ 0.4 0.6 molec. O_X molec. RO₂ ## Compare $P(O_X)$ to $P(RO_2)$ - Not every peroxy radical makes ozone - Where NO_X / VOC is low, some RO₂ - removed by HO₂–RO₂ reactions - Where NO_X / VOC is high, RO₂ typically makes O₃ before being removed ## Acknowledgements This work is supported by the University of Minnesota and NASA (NNX10AG65G). We thank NASA, KNMI and SEDAC/CIESIN for data collection and preparation. This work is under review in J. Geophys. Res. – Atmospheres ## 4. OMI Ω HCHO evaluation - OMI Ω_{HCHO} correlates well with Ω_{HCHO} extrapolated from aircraft measurements and GEOS-Chem simulations (R=0.8) - Low OMI/GEOS-Chem bias possibly due to plumesampling focus of many flights vs. dilution over pixel/grid footprint - Negative OMI Ω_{HCHO} values likely result from error minimization in fitting the retrieved radiances (only occurs where HCHO is very low) ## **OMI** Ω_{HCHO} compared to aircraftderived and modeled Ω_{HCHO} GEOS-Chem • Aircraft Y=0.80X-0.01 R=0.81 Y=0.98X-0.03 R=0.80 Aircraft and Model Ω_{HCHO} (10¹⁶ molecules cm⁻²) Dashed lines indicate best fit (regressions inset); dotted lines indicate 95% confidence intervals for regression